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The photogravitational restricted three-body problem in which a passively gravitating point, in addition to the Newtonian force 
of gravitation the main bodies, also experiences the force of light pressure from each of them is considered. This problem provides 
a fairly adequate model, for example, of the motion of a particle of a gas-dust cloud which is in the field of two gravitating and 
radiating stars. In the case of the elliptic restricted problem when the main bodies are rotating about one another in elliptic 
orbits, the existence of a family of positions of relative equilibrium is established which are analogous to the Lagrangian libration 
points of the classical restricted three-body problem. The necessary conditions for the orbital stability of the triangular libration 
points which have been found are derived using the linearized equations of motion. It is shown that, in the configuration space 
of the system, the stability domain has a fairly simple geometrical meaning in the circular version of the problem. Conditions 
for the existence of parametric resonance, which leads to instability in the elliptic version of the problem, are established for 
small values of the eccentricity. Q 2001 Elsevier Science Ltd. All rights reserved. 

The photogravitational restricted three-body problem (see, the review [l]) models fairly adequately, 
for example, the motion of a particle of a gas-dust cloud which is in the field of two gravitating and 
radiating stars. In this problem, an investigation of the positions of relative equilibrium, in a system of 
coordinates rotating together with the stars, which are analogous to the collinear and triangular libration 
points of the classical restricted three-body problem, is of great interest. A fairly full investigation of 
the family of such points has been carried out in the circular version of the photogravitational problem 
(including an analysis of their stability in the first approximation) [2-51 and a non-linear analysis has 
also been given in certain cases of internal resonance.* It is of interest to examine the effect of the 
eccentricity of the orbit of the main bodies on the conditions of the existence and stability of the above- 
mentioned positions of relative equilibrium. Certain aspects of this problem have been considered 
previously [6-g]. However, the results are only partial (it was assumed [6] that only one body radiates 
and in the case of small eccentricities the only conclusion drawn [7] concerned a small change in the 
stability domain of the circular problem without discovering new instability zones due to the presence 
of eccentricity and the occurrence of parametric resonance) or they do not give the complete pattern 
of the stability domain since they show computer calculations of individual points of this domain for 
certain fixed numerical values of the four parameters of the problem (the two reduction coefficients, 
the mass parameter and the eccentricity) [8,9]. 

The approach proposed here (changing to configuration space) enables one to obtain a fairly simple 
and physically clear picture of the effect of the eccentricity of the orbit of the main bodies on the position 
and stability of the triangular libration points when its values are small. New instability zones are revealed 
in this case, which arise in the case of the eccentricity values which may be as small as desired but do 
not occur in the circular problem. It is established that this instability is due to the appearance of 
parametric resonance (it is shown that only one type of such resonance is possible), to which a simple 
geometric interpretation is also given. 

1. THE EQUATIONS OF MOTION AND POSITIONS OF 
RELATIVE EQUILIBRIUM 

We shall assume that a repulsive force of light pressure, defined as [2] 
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Fp = (1 + &)sC/R2 (1.1) 

where C is a coefficient, characterizing the power of the radiation source, s is the characteristic 
cross-section area of the particle and E is the reflection coefficient (0 < E G l), acts on a particle P of 
negligibly small mass m as viewed from a body S of mass M, in addition to the gravitational force Fg = 
jMm/R* (R is the distance between the bodies). 

The total force F, acting on the particle P, can be represented in the form F = QFp where Q is a 
constant coefficient, characterizing the effect of the force of the light pressure, equal to 

Q=(F,-F&IF,, -oo<Qd 1 

which is called reduction coefficient of the mass of the particle P. 
Taking account of (l.l), we obtain 

Q=l-(lo, q=CI(fM), d=(l+&)s/m 
(1.2) 

(cs is the sail capacity of the particle). As we see, the reduction coefficient Q is not solely determined 
by the characteristics of the radiation source but also by the sail capacity of the particle P. In the case 
of homogeneous particles of spherical shape with a radius p and a density 6, we will have 

Q = 1 - 3q(l + c)/(46p) 

hat is, the effect of the light pressure increases when the absolute dimensions of the particle decrease 
and can be as large as desired even in the case of particles of high density. 

To describe the motion of a passive gravitating point P in a gravitational - repulsive field of two 
radiating masses St and S2, which are rotating around one another in an elliptic orbit with eccentricity 
e, in a Cartesian, barycentric system of coordinates OXYZ which is rotating around the 02 axis (which 
is used in the classical restricted three-body problem [lo]), we will have 

. . au . . x-2JJ-~-Jx=-p 
au . . au 

Y+2v-~-iiY=dy, z=z 

U=Q,y+e,g. Rj=(X-Xj)*+Y2+Z2, j=1,2 

(1.3) 

Here, XI = -p and X2 = 1 - ~1 are the dimensionless coordinates of the points Sr and S2 (the sum of 
their masses and the distance between them r = p/(1 + ecosv), where p, e and v are, respectively, a 
local parameter, the eccentricity and the true anomaly of their orbit, are adopted as the units of mass 
and length) and Qr and Qz(-w c Qi s 1) are the reduction coefficients of the mass of the particle P 
(when Qr = Q2 = 1, Eqs (1.3) become the equation of the classical restricted three-body problem). 
Differentiation with respect to time is indicated by a dot. 

In system (1.3), we now change to the new variables x, y, t using the formulae 

x=/-x, Y=ry. z=rz 

and, as the new independent variable, we take the true anomaly v (again, we shall denote differentiation 
with respect to v by a dot). Then, system (1.3) is written as 

r-zj=fc)$. j+Zi=f(u)~, i=f(v)$ (1.4) 

w= ’ ~(x*+y2-ez2cosv)+u, f(v)=(l+ecosv)-' 

We now consider the positions of relative equilibrium (the libration points) of the particle P in the 
orbital plane of motion of the main bodies when e f 0, that is, in the case of an photogravitational 
elliptic restricted three-body problem (in the case of the circular problem this question is considered 
in [3-51). When z = 0, y = 0, the coordinates of these points x, and y, are found from the system of 
equations 
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(1.5) 

these containing the three parameters (Q,, Qz, p). This system is difficult to solve analytically in 
coordinates. However, when account is taken of the fact that Eq. (1.5) is linear in the parameters Ql 
and Qz, it is easy to find their dependence on the coordinates of the libration points. We will have 

Qj =Rj, j=l,2, RI +R,>l (1.6) 

We conclude from this that, for every p and any pair Q, > 0 and Q2 > 0 (that is, only when gravitation 
predominates over repulsion) for which Qy3 + Qi’3 L 1, a pair of values RI and & is found which 
determine the two triangular libration points which are symmetrical about the Ox axis. The complete 
set of such points (which corresponds to different values of Q1 and Qz) entirely fills a domain of the q 
plane that is bounded by two circles of unit radius with their centres at the points S1 and S,. Note that, 
like in the classical case, these points exist both in the circular as well as in the elliptic problem for any 
eccentricity value. 

Since, as follows from relations (1.2), the reduction coefficients are not solely determined by the 
parameters of the radiation source but also by the sail capacity of the particle P, it can be assumed that, 
for any pair of main bodies S1 and Sz in the indicated domain of existence of triangular libration points, 
a non-denumerable set of different particles will be found which have a sail capacity corresponding to 
the reduction coefficient from (1.6). 

It follows from relations (1.2) that, for a given pair of bodies S1 and Ss, the reduction coefficients of 
all the particles located at the triangular libration points must satisfy the same relation 

n which, without loss in generality, it can obviously be assumed that 0 =S k d 1. From this, in accordance 
with (1.6), we obtain the conditions for finding the coordinates of all of the triangular libration points 
which are possible for the given pair of main bodies characterized by the value of the constant k 

(I-R;)l(l-R;)=k 

The curves corresponding to Eq. (1.7) are shown in Fig. 1 for different values of k. 

(1.7) 

2. THE STABILITY OF THE TRIANGULAR LIBRATION POINTS IN 
THE CIRCULAR PROBLEM 

We now consider the question of the Lyapunov stability of the triangular libration points for zero and 
fairly small values of the eccentricity e. On introducing the perturbations x1 = x - x,, x2 = y - y,, 
x3 = 2 - z,, we obtain the following equations of the perturbed motion in the first approximation 
(summation is carried out from j = 1 to j = 2) 

Fig. 1 
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.?, - 2i, + cxxx, + CXYX2 = 0 

f, + 2i, + cxvxt + cyrx2 = 0 

is +c,,x, =o 
(2.1) 

where 

It is obvious that the coefficients of Eqs (2.1) are analytic functions of the eccentricity e which we 
shall consider as the small parameter of system (2.1). Then, we know [ll] that the characteristics 
exponents of the periodic system (2.1) when e f 0 must become the roots of the characteristic equation 
of the corresponding autonomous system (which is obtained from (2.1) when e = 0) which decomposes 
into a quadratic equation 

x2+1=0 

and a biquadratic equation 

hp+(4+c, +cJh2 +&$yy -+=o (2.3) 

On eliminating the quantities Qt and Qz in the coefficients of these equations using relations (1.6) 
and putting 

Y* 1 Rj = sinvj. (5 -Xj)l Rj =(-I)“’ COSWj, j = 1.2 

we obtain expressions for the roots of Eq (2.3) in h2. 

n2 1.2 =i(-lfll-36p(l -p)sin’(y, +3y2)JH) (2.4) 

From the condition that the right-hand sides of Eqs (2.4) are negative, we find the necessary conditions 
for the stability of the triangular libration points when e = 0 (the roots of the quadratic equation 
corresponding to a change in the z coordinate, as in the classical problem, are found to be equal 
to + i) 

36p(l- p)sin2(yr, + yf2) 6 1 (2.5) 

When there is no light pressure, the condition obtained becomes the well-known [lo] necessary 
condition for the stability of the triangular libration points L4 and L5 in the classical restricted three- 
body problem (for this, it is necessary to put w1 = i~.r~ = n/n/3 in (2.5)). For sufficiently small values of CL, 
determined by the condition 

36l.t(1 -p) d 1 

all the libration points will be stable. The maximum value ~1 = V? - Ji!3 = 0.028595 . . . , determined 
by this condition, is somewhat smaller than the corresponding limiting value for stability in the classical 
problem. However, stability of the libration points is also possible in the problem under consideration 
for larger values of lo.. 

In fact, for this it is only necessary that the coordinates of the libration points should satisfy inequality 
(2.5), which is possible for any lo, for certain $r and &. 

It can be shown that, in this case, the stability domain will consist of two parts (they are shown hatched 
in Fig. 2) which are separated by an instability gap, the boundaries of which are arcs of two circles of 
the same radius R = 3JE) and having the section S,S2 as a common chord (Fig. 2). This splitting 
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of the stability domain occurs at values of lo exceeding the smaller root of the equation (it is clear that 
it can be assumed that p =G 0.5 without any loss of generality) 

36p( 1 - p) = 1 

When CL is increased further the instability gap expands and the part of the stability domain adjacent 
to the classical libration point becomes smaller, contracting to this point at the other bifurcation value 
IL which is the smaller of the roots of the equation 

27p(l -CL)= 1 

and is identical with the value of l.~ which is critical for stability in the classical restricted three-body 
problem. The part of the stability domain adjacent to the Ox axis, while becoming somewhat smaller 
in size, remains up to + = 0.5. 

3. THE EFFECT OF THE ECCENTRICITY 

We will now consider the question of the stability of the triangular libration points in the case of non- 
zero but fairly small values of the eccentricity e of the orbits of the main bodies. Although the distances 
between the bodies in the initial system of coordinates OXXZ cannot now remain unchanged, the 
quantities Rt and R2 will be constant, as before if, at a certain instant of time, they were determined 
from relations (1.6). 

The equations of the perturbed motion will not now be autonomous but their periodic coefficients 
will contain 2w-periodic functions of the true anomaly v which vanish when e = 0 and for fairly small 
eccentricity values which are being analytic functions of the latter. It is known [ll] that the characteristic 
exponents of the class of Hamiltonian system under consideration, when there is no parametric 
resonance, differ from the roots of the characteristic equation of the corresponding autonomous system 
(which is obtained from the periodic system when the small parameter vanishes) by an amount of the 
order of magnitude of the square of the small parameter, the role of which is played by the eccentricity 
in the problem being considered. It can be concluded from this that the stability domain of the triangular 
libration points for small values of e will differ only slightly from their stability domain constructed above 
for the case when e = 0. However, we know [ll, 121 that, even for values of the small parameter as 
small as desired, zones of instability can arise in the above mentioned domain which correspond to cases 
of parametric resonance when the characteristic exponents of the system when e = 0 satisfy one of the 
conditions 

2co,=p, w,+op=p, p=1,2,3 ,... (3.1) 

When e = 0, these characteristic exponents become the roots of the characteristic equation (2.3) which, 
according to (2.4), will be 

wa =(-I)= Ih,(. a=l,2 
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Hence, the zone of parametric resonance instability when e f 0 will be generated from the parametric 
resonance curves (3.1) when e = 0. From elementary analysis it can be shown that, of all the possible 
cases of parametric resonance (3.1), as in the classical restricted three-body problem [12], only one case 

is realized when e = 0. 

4~0: ~2{l-[I-36~(l-~)sin2(ly,+~2)1~)=l (3.2) 

It follows from the theory of the parametric resonance of Hamiltonian systems [ll, 121 (and the system 
being considered can be represented in Hamiltonian form) that, in order for instability at small e actually 
to occur and for relation (3.2) to be satisfied, it is necessary that the harmonics cosu, sinv should certainly 
appear in the expansion of the periodic coefficients of system (2.1) in a Fourier series which, obviously, 
will also hold, as can be seen from expression (2.2) for these coefficients. 

We conclude from this that the whole set of libration points which are unstable in the first 
approximation in the case of small but non-zero values of the eccentricity will lie in a region, adjacent 
to the curve defined by Eq. (3.2) which reduces to the form 

48p(l- u)sin*(Vt + Wz) = 1 (3.3) 

It can be seen from 3.3) that this instability only arises for values of or. from the range CL* s F =Z 0.5 
where TV,* = v2 - 8- 111314 = 0.0212865 . . . is the smaller root of the equation 

48u( 1 - p) = 1 

The resulting equation, like the equation of the boundary of the stability domain (2.5), describes two 
arcs of a circles of the same radii R = 2,/m) with a common chord which is the motion S1S2, 
and, close to these arcs for sufficiently small values of e # 0, the triangular libration points will be unstable 
in the Lyapunov sense, and also in the strict sense (that is, by virtue of the complete equations of the 
perturbed motion) as a consequence of the occurrence of parametric resonance. It can be seen that 
such a case of instability will hold for any pair of bodies Si and S2 and, at least, for those libration points 
coordinates of which satisfy condition (1.7) and equality (3.3) simultaneously. 

Note that the instability of triangular libration points which has been revealed is a generalization of 
the case of instability caused by precisely the same type of parametric resonance that also occurs in the 
classical elliptic restricted three-body problem which is obtained from the problem under consideration 
when Qt = Q2 = 1[12,13]. It is interesting that the corresponding resonance value of l.~ is identical to 
its bifurcation value at which a splitting of the stability domain occurs in the circular photogravitational 
problem. We further note that this interpretation of the stability domain and of the case of instability 
caused by parametric resonance enables one to obtain, in a very simple manner, the results in [6], where 
radiation from just one of the main bodies was taken into account (that is, one of the reduction 
coefficients is equal to unity). In this case, all the triangular libration points are arranged on one of the 
circles of unit radius. They are all stable when u d $2 - a/3 whil e, or f 1 arge values, only those of them 
which are located on the part of the above-mentioned circle which is adjacent to the points L4 and L5 
will be stable. Unlike in the general case, parametric resonance occurs here only in the neighbourhood 
of a single point (the second arc, which corresponds to parametric resonance, does not intersect the 
above-mentioned circle of unit radius). This interpretation also enables one to carry out a further 
numerical analysis of the stability domain more purposefully in the case of arbitrary values of the 
eccentricity which was commenced in [8,9]. 
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